Many modern research fields increasingly rely on collecting and analysing massive, often unstructured, and unwieldy datasets. Consequently, there is growing interest in machine learning and artificial intelligence applications that can harness this `data deluge'. This broad nontechnical overview provides a gentle introduction to machine learning with a specific focus on medical and biological applications. We explain the common types of machine learning algorithms and typical tasks that can be solved, illustrating the basics with concrete examples from healthcare. Lastly, we provide an outlook on open challenges, limitations, and potential impacts of machine-learning-powered medicine.
translated by 谷歌翻译
我们提出了一种用于超声心动图视频的新型异常检测方法。引入的方法利用心脏周期的周期性来学习各种潜在轨迹模型(TVAE)的不同变体。对这些模型进行了对婴儿超声心动图视频内部数据集的健康样本的培训,这些数据集由多个室内视图组成,以了解健康人群的规范性。在推断期间,最大值基于后验(MAP)的异常检测以检测我们数据集中的分布样品。所提出的方法可靠地识别出严重的先天性心脏缺陷,例如Ebstein的异常或Shonecomplex。此外,它在检测肺动脉高压和右心室扩张的任务方面,通过标准变异自动编码器实现了优于基于地图的异常检测。最后,我们证明了所提出的方法通过热图提供了对其输出的可解释解释,该图突出了与异常心脏结构相对应的区域。
translated by 谷歌翻译
机器学习模型与虚假相关性的脆弱性主要在监督学习(SL)的背景下进行了讨论。但是,缺乏对虚假相关性如何影响流行的自学学习(SSL)和基于自动编码器模型(AE)的表现的见解。在这项工作中,我们通过评估这些模型在现实世界和合成分配变化数据集上的性能来阐明这一点。在观察到线性头可能容易受到虚假相关性的观察之后,我们使用对分布外(OOD)数据训练的线性头制定了一种新颖的评估方案,以将预训练模型的性能隔离为潜在的偏差用于评估的线性头。通过这种新方法,我们表明SSL模型始终比AE和SL模型在OOD概括方面始终更健壮,因此在OOD概括方面更好。
translated by 谷歌翻译
We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an a priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown constraint and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. Our approach is naturally applicable to continuous domains and does not require additional hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we explore by learning about the constraint up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.
translated by 谷歌翻译
Counterfactuals are often described as 'retrospective,' focusing on hypothetical alternatives to a realized past. This description relates to an often implicit assumption about the structure and stability of exogenous variables in the system being modeled -- an assumption that is reasonable in many settings where counterfactuals are used. In this work, we consider cases where we might reasonably make a different assumption about exogenous variables, namely, that the exogenous noise terms of each unit do exhibit some unit-specific structure and/or stability. This leads us to a different use of counterfactuals -- a 'forward-looking' rather than 'retrospective' counterfactual. We introduce "counterfactual treatment choice," a type of treatment choice problem that motivates using forward-looking counterfactuals. We then explore how mismatches between interventional versus forward-looking counterfactual approaches to treatment choice, consistent with different assumptions about exogenous noise, can lead to counterintuitive results.
translated by 谷歌翻译
Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.
translated by 谷歌翻译
在本文中,我们在爱尔兰都柏林都柏林的大型和繁忙机场中介绍了一个基于图像的人重新识别数据集。与所有可公开的基于图像的数据集不同,我们的数据集除帧号和相机和人员ID之外还包含时间戳信息。我们的数据集也完全是匿名的,以遵守现代数据隐私法规。我们将最先进的人重新识别模型应用于我们的数据集,并显示通过利用可用的时间戳信息,我们能够在地图中实现37.43%的显着增益,并且在Rank1精度中的增益为30.22%。我们还提出了一个贝叶斯颞次重新排名的后处理步骤,该步骤进一步增加了10.03%的地图增益和Rank1精度度量的9.95%。在其他基于图像的人重新识别数据集中不可能结合视觉和时间信息的工作。我们认为,拟议的新数据集将能够进一步开发人员重新识别研究,以挑战现实世界应用。 Daa DataSet可以从HTTPS://bit.ly/3Atxtd6下载
translated by 谷歌翻译
A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the "impact remediation framework," is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a hypothetical case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality.
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
This paper proposes a novel observer-based controller for Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) designed to directly receive measurements from a Vision-Aided Inertial Navigation System (VA-INS) and produce the required thrust and rotational torque inputs. The VA-INS is composed of a vision unit (monocular or stereo camera) and a typical low-cost 6-axis Inertial Measurement Unit (IMU) equipped with an accelerometer and a gyroscope. A major benefit of this approach is its applicability for environments where the Global Positioning System (GPS) is inaccessible. The proposed VTOL-UAV observer utilizes IMU and feature measurements to accurately estimate attitude (orientation), gyroscope bias, position, and linear velocity. Ability to use VA-INS measurements directly makes the proposed observer design more computationally efficient as it obviates the need for attitude and position reconstruction. Once the motion components are estimated, the observer-based controller is used to control the VTOL-UAV attitude, angular velocity, position, and linear velocity guiding the vehicle along the desired trajectory in six degrees of freedom (6 DoF). The closed-loop estimation and the control errors of the observer-based controller are proven to be exponentially stable starting from almost any initial condition. To achieve global and unique VTOL-UAV representation in 6 DoF, the proposed approach is posed on the Lie Group and the design in unit-quaternion is presented. Although the proposed approach is described in a continuous form, the discrete version is provided and tested. Keywords: Vision-aided inertial navigation system, unmanned aerial vehicle, vertical take-off and landing, stochastic, noise, Robotics, control systems, air mobility, observer-based controller algorithm, landmark measurement, exponential stability.
translated by 谷歌翻译